MANAGEMENT OF NEUROGENIC BLADDER IN SPINAL CORD INJURY

Marc Manganiello
BID Needham Grand Rounds
January 21, 2015
DISCLOSURES

- None
UROLOGY PRACTICE ASSOCIATES

- Paul Church
- Joseph Ciccone
- Robert Eyre
- Stephen Eyre
- Marc Manganiello
- Justin Zbrzezny

- 100 West St, Needham
- Faulkner Hospital
- Dedham Medical Associates
INTRODUCTION
INTRODUCTION
INTRODUCTION

- Bladder function
- Highly regulated, neurologic event
- Supra-pontine
- Spinal Cord
- Lower motor neuron reflex arc
- Coordination of bladder and urethra
OUTLINE – NEUROGENIC BLADDER, SCI

- Initial Patient Evaluation
- Voiding Patterns
 - Normal
 - Abnormal
- Urodynamics
- Treatment Algorithm
- Urinary Diversion
- Complications
OBJECTIVES

- Understand the urologic workup for the patient with spinal cord injury
- Review the neurophysiology of the bladder
- Predict bladder functional pattern based on level of injury
- Describe treatment options for bladder (and upper tract) management
Case 1

- 43 year old male with urinary frequency
HISTORY - PERTINENT QUESTIONS?

- Specific urologic history
 - History of symptoms
 - Frequency of urination (day and night)
 - Urge episodes
 - Incontinence
 - Volume voided
 - Is there bladder sensation
 - Is there relief with voiding
 - Mode of voiding (use of catheter, etc)
 - Infections
 - Hematuria
 - History of stones
HISTORY

- Past medical history
 - Pediatric voiding dysfunction
 - Hereditary disorders
 - Obstetric history
 - Diabetes
 - Pelvic surgery
 - Trauma
 - Neurologic diseases
 - Bowel habits
 - Sexual history
PHYSICAL EXAM

- Neuro-Urologic Exam
 - Sensation (S2-5)
 - Reflexes
 - What is the bulbocavernous reflex?
 - Anal sphincter contraction with glans squeeze
 - Lower limb
PHYSICAL EXAM

- Palpation of bladder
- Digital Rectal Exam
 - Anal Sphincter tone
 - Palpation of Prostate
CASE 1

- 43 year old male
- C5 spinal cord injury after dirt bike accident, many years ago
- Experiences urinary urgency with incontinence
- Voids in small volumes
- Has 1 to 2 urinary infections per year
- Chronic constipation
- No other medical issues
- Medications: Gabapentin
- Wheelchair bound, quadriplegic
Figure 3 - Normal bladder cycle. In the normal cycle the sphincters hold the urine until the bladder is filled, and open to allow full emptying.
Urinary Function

Filling/Storage
- Detrusor Activity
 - (normal, overactive, neurogenic)
- Bladder Sensation
- Bladder Capacity
- Compliance
- Urethral Function

Emptying/Voiding
- Detrusor Activity
 - (normal, underactive, acontractile, areflexic)
- Urethral Function
 - (mechanical obstruction, DSD, non-relaxing)
NEUROPHYSIOLOGY OF THE BLADDER

STORAGE/FILLING

- Stretch receptors activated
- Spinal afferents

Sacral reflex: Detrusor contraction

Bladder fills

- Pontine micturition center
- Brain

- Inhibition of detrusor contraction
- Sphincter Coordination and Contraction
- Sympathetic NS

Sympathetic NS
NEUROPHYSIOLOGY OF THE BLADDER

VOIDING

- Stretch receptors activated
- Spinal afferents

Sacral reflex:
- Detrusor contraction

BLADDER FILLS

Pontine micturition center
- Brain

- Detrusor Contraction
- Sphincter Relaxation
- Parasympathetic NS
- Pelvic Nerve
NEUROPHYSIOLOGY OF THE BLADDER

- Disturbance of neural pathway
- Neurogenic lower urinary tract dysfunction
NEUROGENIC DYSFUNCTION

- Variety of problems may arise
- Renal damage is most serious consequence
- Elevated bladder storage pressure is most important risk factor for renal damage
 - Classic study implicated >40 cm/H20 as increased risk for upper tract deterioration

Spinal Cord Injury

- May be symptomatic or asymptomatic
 - 2/3 SCI patients experience silent deterioration of bladder function on long-term urodynamic follow-up
- Life-long urologic followup
- Renal dysfunction from long term neurologic effects on bladder
 - Bladder spasticity
 - Fibrosis and poor compliance
 - Vesicoureteral Reflux
 - Urinary Infections
SCI - Neurogenic Bladder

- Goals of management:
 - Prevent upper tract deterioration
 - Relieve symptoms
 - Increase bladder capacity
 - Treat incontinence
 - Improve quality of life
SCI - NEUROGENIC BLADDER

- Determine if:
 - Storage failure
 - Emptying failure
 - Both
Predicting Dysfunction...

- May be able to predict neurologic deficits based on level of injury/lesion
- However, each lesion is different
 - Complete vs incomplete lesion
 - Cord Fibrosis
 - Reorganization of neural pathway
 - Combined lesions
- Urodyamics should be performed
NEURAL INJURY
3 BASIC CATEGORIES

- Supra – Pontine
- Supra – Sacral
- Lower Motor Neuron
NEURAL INJURY

- Supra – Pontine
SUPRA – PONTINE LESIONS

- Examples?
- Brain Tumors
- Dementia (Alzheimers, Lewy body, etc)
- Parkinsons
- Cerebrovascular Pathology
SUPRA – PONTINE LESIONS VOIDING DYSFUNCTION

- Involuntary bladder contractions
 - Enhanced excitability
 - Loss of inhibition
- Coordinated sphincter function
- Sensation preserved
- Incontinence due to detrusor overactivity
Neural Injury

- Supra – Sacral
SUPRA — SACRAL LESIONS

- Examples?
- Multiple sclerosis
- Spinal cord lesions (myelodysplasia)
- Disc disease, spinal stenosis
- Spinal cord injury
Supra – Sacral Lesions Voiding Dysfunction

- Detrusor Overactivity
 - “Brake” is affected

- Detrusor – Sphincter Dyssynergia
 - Bladder-sphincter coordination is affected
Detrusor – Sphincter Dyssynergia

- Normally,
 - External sphincter relaxation is coordinated with detrusor contraction

- Disruption of Pontine coordination
 - Supra-pontine lesions don’t have this problem

- Inappropriate increase in sphincter activity during involuntary contraction

- Causes elevated bladder pressures
DETRUSOR SPHINCTER DYSSYNERGIA
SUPRA – SACRAL SPINAL CORD INJURY

- Urologic Function generally 3 phases
 - Spinal Shock
 - Recovery
 - Stable
Spinal Cord Injury – Phase 1

- Spinal Shock
 - Immediate cord swelling/edema
 - Ischemic cord injury
- Absence of reflex activity below lesion
 - Time period?
 - Variable...
 - 2 to 12 weeks, or 6 to 12 months
Spinal Cord Injury – Phase 1

- Phase 1: Storage/Void Pattern:
 - Urinary retention
 - Overflow incontinence
- Optimal management:
 - Intermittent catheterization
Spinal Cord Injury – Phase 2

- Recovery phase
- Reflex activity returns
- Disconnection from pontine micturation center:
 - Voiding is not centrally mediated
 - Rather as a volume initiated detrusor contraction
 - sacral reflex arc
Spinal Cord Injury – Phase 3

- Stable phase
- No further neurologic recovery
- Requires lifelong urologic followup
- Detrusor dysfunction may develop poor bladder compliance, high pressure
 - Detrusor/Bladder fibrosis
Neural Injury

- Lower Motor Neuron
LOWER MOTOR NEURON INJURY?

- S2 - S4
- Detrusor areflexia
- Loss of Sensation
- Fixed external sphincter
 - Unable to voluntarily relax
REMEMBER CASE 1?

- 43 year old male urinary frequency
- C5 spinal cord injury after dirt bike accident
- Experiences urinary urgency with incontinence
- Voids in small volumes
- Has 1 to 2 urinary infections per year
- Chronic constipation
- Otherwise Healthy
- Medications: Gabapentin
- Wheelchair bound, quadriplegic
CASE 1: NEXT STEPS

- Voiding Diary
- Uroflow, Postvoid Residual
- Creatinine Clearance
- Imaging
 - Ultrasound, CT (hydronephrosis)
 - Cystogram (reflux)
- Urodynamics
URODYNAMICS – GOALS FOR SCI

- Describes bladder function
 - Capacity
 - Sensation
 - Ability to contract
- Defines relationship between detrusor and external sphincter
 - Bladder Storage
 - Bladder Emptying (Voiding)
- Identifies patients at risk for complications
- Determines need for intervention
URODYNAMICS
URODYNAMICS SUITE
INTERNATIONAL CONTINENCE SOCIETY
LOWER URINARY TRACT CLASSIFICATION

URODYNAMICS

Filling/Storage
- Detrusor Activity
 - (normal, overactive, neurogenic)
- Bladder Sensation
- Bladder Capacity
- Compliance
- Urethral Function

Emptying/Voiding
- Detrusor Activity
 - (normal, underactive, acontractile, areflexic)
- Urethral Function
 - (mechanical obstruction, DSD, non-relaxing)
URODYNAMICS
CASE 1

- Urodynamic
 - Low compliance, low volume bladder
 - Detrusor overactivity
 - Detrusor – Sphincter Dyssynergia
CASE #2428080

- Management Options?
- Conservative
 - Clean intermittent Catheterization
 - Indwelling catheterization
 - Contained Incontinence
- Medication
 - Anti-cholinergics
 - Botox
- Surgery
CASE #2428080

- Started CIC
- Anti-cholinergic Therapy
MANAGEMENT – CIC

- Lapides 1972: Clean intermittent catheterization
- Begin once patient is medically stable from SCI
- Allows for
 - low bladder volumes
 - low bladder pressure
- Reduces incidence of UTI
 - As compared with indwelling catheters
 - If indwelling catheter is required, use SPT
MANAGEMENT – CIC

- Disadvantages
 - Need for manual dexterity
 - Need for training
 - Mental capacity
MANAGEMENT – ANTICHOLINERGICS

- Anticholinergics improve urodynamic parameters by:
 - Decrease detrusor overactivity
 - Increase bladder capacity
 - Reduce bladder filling pressure
 - Improve compliance
 - Reduce urge incontinence
Management – Anticholinergics

- Side effects:
 - Dry mouth
 - Constipation
 - Blurred vision
 - Drowsiness
 - Confusion
 - Urinary Retention
ANTICHOLINERGICS

- Different formulations may contribute to confusion...
- Oxybutynin, tertiary amine, penetrates blood-brain barrier
 - Transdermal avoids first pass effect, minimizes dry mouth
- Trospium, quaternary amine, does not cross BBB
Followup – Annual Monitoring

- Assess upper urinary tract (Ultrasound)
- Renal function testing
- Postvoid residual (if patients are voiding)
- Voiding diary
FOLLOWUP – URODYNAMICS

- Repeat or increase frequency of UDS if:
 - Change in voiding pattern
 - Increasing incontinence, urgency, frequency, etc
 - Urinary tract infection
 - Stones
 - Medication change
 - Presence of detrusor sphincter dyssynergia
 - Presence of low compliance
 - Development of vesicoureteral reflux
FOLLOWUP

- Regular, screening urine cultures NOT recommended
- Bacteriuria is common
 - Especially with intermittent catheterization
- Routine testing leads to overtreatment of clinically insignificant bacteriuria
CASE 1, CONTINUED

- 7 months later
- Returns with spasms, and incontinence
- Next step:
- Botox
Management – Botulinum Toxin

- Mechanism of Action:
 - Inhibits acetylcholine release at neuromuscular junction
 - Blocks neuromuscular contraction
 - Injected evenly throughout bladder into suburothelium

- Side effect:
 - High post void residuals and need for CIC
MANAGEMENT – BOTOX

- Phase 3, multicenter, double-blind, randomized, placebo-controlled study
- 275 patients (50% with SCI)
- 200 or 300 U botox or placebo
- Improvements in urinary incontinence, urodynamic parameters, quality of life
- No difference between 200 and 300 units

Management – Botox

- 570 injections in 199 patients (Spinal Cord Injury)
- Improved:
 - Mean capacity
 - Bladder compliance
- Reduced:
 - Weekly incontinence episodes
- Maintained benefit for 10 – 12 months
 - 20% for >12 months

CASE SUMMARY

- 43 year old male
- C5 spinal cord injury after trauma
- Low compliance bladder with DESD
- Returns after Botox with infection, incontinence, and high bladder pressures
- Worsening UDS parameters despite
 - CIC
 - Anticholinergics
 - Botox
- Next option:
 - Surgery
SURGICAL MANAGEMENT

- Incontinent Urinary Diversion
 - Ileovesicostomy
 - Ileal Conduit
- Augmentation Cystoplasty
- Continent Catheterizable Urinary Diversion
- Neobladder
ILEOvesicostomy
ILEOVESICOSTOMY

- Incontinent diversion
- Best in patients with:
 - Detrusor sphincter dyssynergia
 - High spinal cord lesions
 - Quadriplegia or limited upper extremity dexterity
 - Unable to perform CIC
ILEAL CONDUIT
AUGMENTATION CYSTOPLASTY

detubulated bowel

new bladder wall

bladder wall

urethra
AUGMENTATION CYSTOPLASTY

- Increases capacity
- Low-pressure reservoir
- Good for patients with intractable overactivity
- Requires ability to perform CIC
CUTANEOUS CONTINENT DIVERSION
Metabolic Considerations Intestinal Use in Urology

- Segment of intestine used
 - Stomach, jejunum, ileum, colon
 - Electrolyte abnormalities
 - Acid – Base Abnormalities
Metabolic Considerations in Urology

- Bone Demineralization
 - Acidosis
INFECTION

- Increase incidence of bacteriuria, bacteremia, and sepsis
- Acute pyelonephritis develops in 10 - 17% of patients with conduits (colon and ileum)
- 75% patients with conduits have bacteriuria
- Intestinal mucus becomes a source for ascending infection
UROLITHIASIS

- Persistent hypercalciuria
 - Acidosis and release of calcium from bone
- Presence of staples or nonabsorbable suture
- Intestinal mucus
 - Nidus for stones
 - May impede emptying --> leading to infection and stone formation
DIARRHEA

- Decreased bowel transit time
 - Resection of ileum, colon, ileocelecal valve

- Bile salt malabsorption
 - Normally occurs in ileum
 - Bile salts cause colonic mucosal irritation and diarrhea
 - Increased lipid delivery to colon --> fatty diarrhea
Vitamin B12 Deficiency

- **Consequence of:**
 - Resection of distal ileum

- **Results in:**
 - Megaloblastic anemia
 - MCV > 100
 - Neurologic abnormalities
 - Demyelination of spinal cord
 - Sensory and motor deficiencies, dementia, psychosis
THANK YOU!

Questions?