Topical Analgesics

Murilo Pereira Flores 1, Anita Perpetua Carvalho Rocha de Castro 2, Jedson dos Santos Nascimento 3

Summary: Flores MP, Castro APCR, Nascimento JS - Topical Analgesics.

Background and objectives: Pain treatment involves the usage of common and opioid analgesics, nonsteroidal anti-inflammatory drugs (NSAIDs) and adjuvant analgesics. Traditionally, these drugs are administered systemically or into the neuraxis. However, when analgesics are applied through these pathways, they are associated with significant side effects, which can hinder its use. Topical administration of analgesics is an alternative. The objective of this paper is to discuss topical analgesics, the mechanisms of action and clinical efficacy.

Content: This is a review paper addressing the usage of the topical local anesthetics: capsaicin, clonidine, tricyclic antidepressants, ketamine, opioids and cannabinoids, discussing mechanism of action and effectiveness.

Conclusions: Topical analgesics are promising as a strategy for pain treatment, as they are associated with lower incidence of side effects. The benefit of local anesthetics, NSAID’s and capsaicin is well established. However, the efficacy of clonidine, tricyclic antidepressants, ketamine, opioids and cannabinoids is still questionable. Studies have shown that the multimodal approach is an alternative, but studies are needed to confirm this hypothesis.

Keywords: Administration, Topical; Analgesia; Analgesics, Opioid; Anesthetics, Local; Antidepressive Agents, Tricyclic; Anti-inflammatory Agents; Cannabinoids; Capsaicin; Ketamine.

INTRODUCTION

Pain treatment involves the usage of common and opioid analgesics, nonsteroidal anti-inflammatory drugs (NSAIDs) and adjuvant analgesics. Traditionally, these drugs are administered systemically or into the neuraxis. However, when analgesics are applied through these pathways, they are associated with significant side effects, which can hinder its usage. Pharmacologically, it is known that the main mechanism of action of analgesics is to act at specific sites located in the central nervous system and periphery. This observation led to studies, which proposed the topical administration of drugs such as NSAID’s, local anesthetics, capsaicin, tricyclic antidepressants, ketamine, clonidine, opioids, and cannabinoids. The topical application of these drugs allows high concentrations in peripheral effector sites as opposed to the low serum levels of these sites. Thus, undesirable side effects are less likely to occur. The objective of this review is to discuss topical analgesics, the mechanisms of action and clinical efficacy 1.

TOPICAL VERSUS TRANSDERMAL APPLICATION

There are medications which are applied directly to the skin, but exert predominant effects in the central nervous system. These formulations use skinonly as a vehicle for administration, just like the fentanyl transdermal patch does. The goal is to provide a slow and gradual release of medication into the bloodstream, keeping blood levels relatively constant for a certain period of time. In contrast, topically administered medications exert peripheral effects near the site of application 1. By definition, topical formulations are those that, when applied in the vicinity of the affected area, exert analgesic action that is associated with increased concentration in target tissue and low serum concentration.

NONSTERoidal ANTI-INFLAMMATory DRUGS

The NSAID’s are the most commonly used topical agents in clinical practice. Its mechanism of action is the inhibition of cyclooxygenase type 1 and type 2 enzymes with a consequent reduction of prostaglandin synthesis and sensitization of nerve endings in peripheral tissues, common source of pain and inflammation. Its systemic usage is associated with liver, cardiovascular, gastrointestinal and renal side effects 1. Its topical application is interesting because it promotes therapeutic concentration in the target tissue while maintaining serum in insufficient levels to produce adverse reactions 2. Topical NSAIDs produce high concentration in the dermis, synovium, muscle tissue, and joint cartilage, yet its bioavailability is low, ranging from 5% to 15% of that observed after systemic administration 3. Differences in analgesic response and systemic exposure may occur depending on the source.
of the pain, the type of skin and skeletal muscle tissue of each patient. There is no data correlating the systemic with the tissue concentration of the NSAIDs, so its use is still empirical based on the response of each patient. Formulations that facilitate tissue penetration may improve efficiency in deeper sites, such as joints. However, this may lead to higher systemic absorption of this group of drugs. The effectiveness of topical NSAIDs for various musculoskeletal pain syndromes has been proven by several clinical trials and systematic reviews. In addition to reducing the synthesis of prostaglandins at the pain site, these drugs suppress inflammation by inhibiting leukocyte adhesion and function, reducing platelet aggregation, modulating lymphocyte response, inhibiting cytokine production, suppressing proteoglycan synthesis in cartilaginous tissue, decreasing cell lysis mediated by the complement system and inhibiting the formation of free radicals.

Recent discoveries of peripheral mechanisms involved in the pathophysiology of neuropathic pain have justified the usage of NSAIDs in patients in this condition. It is now known that nerve injury stimulates the release of phospholipids, which in turn activates phospholipase A2, generating prostaglandin E2. This product binds to primary nociceptive fibers, leading to phosphorylation of sodium channels and thereby transmitting the pain signal to the central nervous system. Therefore, this peripheral sensitization mediated by prostaglandins in primary afferent peripheral nociceptors could be blocked by NSAIDs topical agents. Topical medications such as indomethacin, aspirin and diclofenac have been used for neuropathic pain, despite the inconsistent results.

LOCAL ANESTHETICS

Local anesthetics applied topically can relieve pain of neuropathic origin by reducing ectopic discharges of superficial somatic nerves in areas of localized pain. It binds to abnormal sodium channels, which are overregulated in damaged peripheral nerves, thereby suppressing abnormal spontaneous activity that can initiate or maintain neuropathic pain status. Local anesthetics are available as a patch containing 5% lidocaine and in an Eutectic Mixture of Local Anesthetics (EMLA) as a cream containing 2.5% prilocaine and 2.5% lidocaine. In the United States, the lidocaine patch 5% is licensed for use in patients with post-herpetic neuralgia. These patches contain 750 mg of lidocaine, of which only 5% is released. Even with multiple applications of lidocaine patches, the systemic levels of this drug remain low.

Topical administration of this group of drugs has been shown to be safe and free of major side effects. A pharmacokinetic study evaluated the effects of lidocaine patch 5% applied continuously for 72 hours in healthy volunteers. The serum concentration measured was 25 times lower than that necessary to produce toxic effects. There was no loss of sensation at the site of application, but the most patients experienced mild local erythema.

EMLA cream has been used to provide dermal anesthesia for venipuncture, lumbar puncture, intramuscular injection, and circumcision. Some studies have explored the usage of EMLA cream in post-herpetic neuralgia, but few have shown efficacy. A study of 11 patients in this condition concluded that daily application of EMLA produced significant reduction in the paroxysm of pain, allodynia, and hyperalgesia. Only one patient developed pruritus and discreet local erythema. However, one should be alert to the possible onset of methemoglobinemia with the prolonged use of prilocaine.

Studies of the usage of lidocaine patch 5% have produced more consistent results in neuropathic pain treatment. A study of 40 patients with various focal peripheral neuropathies showed a significant difference in pain scores after using lidocaine patch 5% for one week, with a Number Needed to Treat (NNT) of 4.4 for 50% pain reduction. Katz et al. conducted a randomized clinical trial with 332 patients with post-herpetic neuralgia. After three weeks of lidocaine patch 5%, statistically significant difference was seen in neuropathic pain scores between treatment and placebo groups: 65.8% of patients reported pain relief in the first week and 77% reported improvement in quality of life. Only 14% had mild local erythema.

CAPSAICIN

Capsaicin is a compound derived from a chili pepper extract. Its mechanism of action consists of binding to specific receptors/nociceptors in the skin, which initially causes a state of neuronal excitation and a period of increased local sensitivity. At this stage a burning sensation, stinging, and itching occur, associated with cutaneous vasodilation. These manifestations are attributed to the stimulation of afferent C-fibers and the release of substance P. Soon after, a refractory period occurs with reduced sensitivity, which becomes persistent after repeated applications due to the depletion of substance P and degeneration of peripheral nerve fibers. This degeneration can be significant in a few days of capsaicin 0.075% usage. However, with discontinuation of use, there is reinnervation of nerve fibers within six weeks (after three weeks of treatment). The potential effects of prolonged usage are unknown.

The adverse effects of capsaicin, which intensity depends on its concentration, result mainly from its local application and are represented by burning, stinging, and erythema. These reactions may compromise the treatment's adherence. It is estimated that for every 10 patients, one tends to abandon the treatment due to the presence of local symptoms. Moreover, due to these irritant effects, it becomes difficult to perform double-blind clinical trials with this medication. Although systemic effects are rare, studies have shown that some patients develop hyperreactivity of the respiratory tract by inhaling capsaicin particles.

Capsaicin is effective for treating neuropathic pain and associated with conditions such as osteoarthritis, rheumatoid arthritis, and psoriasis. Its effect has been observed in conditions such as diabetic neuropathy, postherpetic neuralgia, chronic peripheral polyneuropathy, and surgical neuropathic pain. According to a meta-analysis of randomized controlled trials, assessing the usage of capsaicin 0.075% for eight
weeks in patients with neuropathic pain there was a NNT of 6. For capsaicin 0.025% in patients with musculoskeletal pain the NNT was 8 10.

CLONIDINE

Clonidine is a pre-synaptic α-2 adrenergic receptor agonist drug present in structures of the central and peripheral nervous system, specifically in the brain, spinal cord, and dorsal root ganglia. All these sites are potentially involved in the antinociceptive effects of clonidine. The sympatholytic action of clonidine is known to act in the supraspinal and spinal structures, which are responsible for painful stimuli modulation, resulting in effective analgesia. Classically, clonidine has been used systemically and in the neuraxis. Its therapeutic use, however, has been limited by adverse effects such as sedation, dry mouth, hypotension, and rebound hypertension 13.

It is known that α-2 adrenergic receptors are expressed in the nociceptive primary sensory neurons and that the peripheral administration of α-2 receptor agonist produces antinociception. This observation led to the hypothesis that the topical administration of clonidine has antinociceptive effect, motivating the development of this formulation 4,13. Clonidine, as a lipophilic substance, is believed to easily penetrate the skin and reach the local antinociceptive pathways, providing analgesia.

The damaged peripheral nerves have increased adrenergic sensitivity, and the presence of agonists, such as norepinephrine, may increase its ectopic discharges, resulting in greater pain. Studies show that the activation of peripheral α-2 adrenergic receptors by clonidine reduces the local release of catecolminas, reducing pain and allodynia 4,13.

Topical clonidine has been effective in patients with diabetic neuropathy, especially those with thin, sharp pain 14; however, its repeated topical application may result in antinociceptive tolerance by the third day of use 13.

TRICYCLIC ANTIDEPRESSANTS

Tricyclic antidepressants are well-established as pain medications. The effect is at the central level by inhibiting the reuptake of norepinephrine and serotonin, and activation of descending inhibitory pain pathways. The peripheral analgesic effects of tricyclic antidepressants have been attributed to the decrease of cyclic AMP via adenosine receptor activation and inhibition of the voltage-dependent sodium channels. Regarding systemic side effects, it may cause sedation, postural hypotension and anticholinergic responses 15.

The topical formulation containing 4% amitriptyline and 2% ketamine was effective in reducing neuropathic pain after three weeks of treatment 16. The formulation containing 5%, however, was not effective, showing the importance of the association of different drugs with different mechanisms of action for better pain control 15.

Doxepin, a tricyclic antidepressant with a mechanism of action similar to that of amitriptyline, when administered in 5% formulation was effective in reducing pain after two weeks of usage in patients with neuropathic pain, oral mucositis related to cancer and complex regional pain syndrome type 1 17-19.

KETAMINE

Ketamine is a noncompetitive N-methyl-D-aspartate (NMDA) receptor antagonist. Neurotransmitters such as glutamate and aspartate are released in response to noxious stimuli and bind to NMDA, AMPA and glutamate-type M receptors, playing a significant role in the mechanism of central sensitization and wind-up phenomenon, which are involved in the perpetuation of pain. Despite its potential benefits for pain treatment, especially neuropathic pain, the systemic administration of ketamine in outpatient clinics is due to the lack of oral formulations and the adverse effects such as hallucinations, nausea and vomiting 20. Topical ketamine gel is an alternative, as it is easy to apply and acts on opioid receptors, such as the NMDA receptor antagonist and peripheral blockade of sodium and potassium channels 21.

Topical ketamine, when administered to patients with chronic neuropathic pain is effective to reduce allodynia and hyperalgesia 21. Studies show that the analgesic effect of ketamine is dose-dependent, with changes in thermal sensitivity, sense of relaxation and analgesia at doses of 0.13 mg.kg⁻¹, 0.2 mg.kg⁻¹, and 0.37 mg.kg⁻¹, respectively 20.

Topical ketamine may be a therapeutic option for patients with neuropathic pain. In patients with complex regional pain syndrome, the topical usage of ketamine was effective to improve allodynia 21. However, due to the lack of more consistent studies involving a larger number of patients the topical usage of ketamine should be reserved for refractory cases 20.

OPIOIDS

Opioids are already established drugs for the treatment of moderate to severe pain. Potential adverse effects and fear of addiction have limited its usage. They act on specific receptors that, when activated, interfere with the transmission of pain impulses. The inhibitory effects are exerted both in the brain and by increasing the threshold of nociceptive fibers of gelatinous substance found in the dorsal horn of the spinal cord. Studies have shown that opioid receptors are also present in the peripheral nervous system. When synthesized in dorsal root ganglia of the spinal cord, these receptors are transported to the peripheral terminals of primary afferent neurons via axons, which, when stimulated, decrease the release of substance P contributing to pain control.

Based on this knowledge, opioids of topical formulation have been studied for the treatment of pain related to pressure ulcers, considering that changes in local perfusion prevent systemic opioids from achieving satisfactory levels in the desired site of action. Moreover, patients with this type of injury often have several comorbidities and are therefore more prone to the systemic adverse effects of opioids, mainly respi-
ratory depression. Three randomized trials demonstrated the efficacy of morphine and diamorphine gel for treating pain related to pressure ulcers, with improvement in pain scores using verbal scales. However, there are no clear recommendations regarding the optimal dosage and opioid.

Morphine oral rinse solution also has proven effective for analgesia in patients with cancer-related mucositis and the 2% solution was statistically more effective than the 1% solution.

CANNABINOIDS

Cannabinoids are substances derived from the hemp plant Cannabis sativa, with depressant and hallucinogenic properties. The central antinociceptive effects of cannabinoids are mediated by CB1 receptor activation in the brain and spinal cord, acting in the modulation of painful stimuli. The CB2 receptors are present in non-neural tissues, such as microglia. The systemic side effects of cannabinoids, however, can cause hypoactivity, motor dysfunction and hypothermia, which has been one of the limitations for its therapeutic usage, in addition to issues related to sociocultural and legal aspects.

The observation of the expression of cannabinoid receptors in peripheral neurons has contributed to the completion of works evaluating the usage of topical formulations comprising cannabinoids. Activation of CB1 receptors promotes local inhibition of cyclic AMP synthesis, inhibition of substance P and related to the peptide calcitonin gene, in addition to opening of potassium channels via G protein. Its topical analgesic effect has been demonstrated in animal models alone or combined with other analgesics. It has been shown that the topical usage of cannabinoids can potentiate the antinociceptive effects of topical morphine.

CONCLUSION

Topical analgesics are promising as a strategy for pain treatment, as they are associated with lower incidence of side effects. The benefit of local anesthetics, NSAIDs, and capsaicin is well established; however, the efficacy of clonidine, tricyclic antidepressants, ketamine, opioids and cannabinoids is still questionable. Trials show that the multimodal approach is an alternative, but more studies are needed to confirm this hypothesis.
INTRODUÇÃO

O tratamento da dor envolve a utilização de analgésicos opioides, analgésicos comuns, anti-inflamatórios não hormonais (AINH’s) e analgésicos adjuvantes. Tradicionalmente, estes fármacos são administrados por via sistêmica ou no neuroeixo. No entanto, quando aplicados por estas vias, estão associados a efeitos colaterais importantes, os quais podem inviabilizar o seu uso. A administração tópica de analgésicos é uma alternativa. O objetivo deste trabalho é discutir os analgésicos tópicos, seus mecanismos de ação e eficácia clínica.

Conteúdo: Trata-se de um trabalho de revisão que aborda a utilização tópica de anestésicos locais, capsaicina, clonidina, antidepressivos tricíclicos, cetamina, opioides e canabinoides, discutindo o seu mecanismo de ação e a sua eficácia.

Conclusões: Os analgésicos tópicos são promissores como estratégia para o tratamento da dor, já que estão associados a menor incidência de efeitos colaterais. O benefício dos anestésicos locais, dos AINH’s e da capsaicina está bem estabelecido, entretanto, a eficácia de clonidina, antidepressivos tricíclicos, cetamina, opioides e canabinoides ainda é questionável. Trabalhos demonstram que a abordagem multimodal é uma alternativa, porém estudos são necessários para confirmar esta hipótese.

Unitermos: ANALGESIA; ANALGÉSICOS, Anti-inflamatórios não esteroides, Cetamina, Opioides; Canabinoides; ANESTESIA, Tópica; Antidepressivos; Capsaicina; DOR.

APLICAÇÃO TÓPICA X TRANSDÉRMICA

Existem medicações que são aplicadas diretamente na pele, no entanto, exercem seus efeitos predominantes no sistema nervoso central. Estas formulações utilizam a pele apenas como veículo de administração, a exemplo do fentanil transdérmico. O que se pretende com isto é fornecer uma liberação lenta e gradual da medicação para a corrente sanguínea, mantendo assim níveis séricos relativamente constantes por um determinado período de tempo. Em contrapartida, os fármacos de administração tópica exercem seus efeitos na periferia, próximo ao seu sítio de aplicação. O benefício dos anestésicos locais, dos AINH’s e da capsaicina está bem estabelecido, entretanto, a eficácia de clonidina, antidepressivos tricíclicos, cetamina, opioides e canabinoides ainda é questionável. Trabalhos demonstram que a abordagem multimodal é uma alternativa, porém estudos são necessários para confirmar esta hipótese.

ANTI-INFLAMATÓRIOS NÃO HORMONAI S

Os AINH’s são os agentes tópicos mais utilizados na prática clínica. Seu mecanismo de ação consiste na inibição da enzima ciclo-oxygenase tipo 1 e tipo 2 com consequente redução da síntese de prostaglandinas e da sensibilização de terminações nervosas nos tecidos periféricos, sítio comum de dor e inflamação. Sua utilização sistêmica está associada a importantes efeitos colaterais hepatícios, cardiovasculares, gastrointestinais e renais. Sua aplicação tópica é interessan-
te por promover concentrações terapêuticas no tecido alvo, mantendo níveis séricos insuficientes para gerar reações adversas 2.

AINH’s tópicos produzem elevada concentração na derme, na sinóvia, nos tecidos musculares e nas cartilagens articulares, porém sua biodisponibilidade é baixa, variando entre 5% a 15% da observada após a administração sistêmica 3. Diferenças na resposta analgésica e na exposição sistêmica podem ocorrer, dependendo da origem da dor, das características da pele e do tecido musculoesquelético de cada paciente. Não existem dados concretos que correlacionem a concentração sistêmica e tecidual dos AINH’s, o que faz sua utilização ser feita ainda de forma empírica, de acordo com a resposta de cada paciente. Formulações que facilitem sua penetração nos tecidos podem melhorar a eficácia em sitos mais profundos, como articulações. No entanto, isso pode acarretar maior absorção sistêmica deste grupo de fármacos 2.

Diversos ensaios clínicos e revisões sistemáticas têm comprovado a eficácia dos AINH’s tópicos nas diversas síndromes dolorosas musculoesqueléticas. Além de reduzir a síntese de prostaglandinas no local da dor, estas medicações suprimem o processo inflamatório através da inibição da adefência e da função leucocitária, da redução da agregação plaquetária, da modulação do resposta linfocitária, da inibição da produção de citocinas, da expressão da síntese de proteoglicanas no tecido cartilaginoso, da diminuição da lise celular mediada pelo sistema complemento e da inibição da formação de radicais livres 1,2.

As recentes descobertas de mecanismos periféricos implicados na lisiopatologia da dor neuropática têm justificado o uso dos AINH’s em pacientes com esta condição. Sabe-se atualmente que a lesão neural estimula a liberação de fosfolípidios, que por sua vez ativam a fosfolipase A2, gerando prostaglandina E2. Este produto se liga a fibras nociceptivas primárias, induzindo a fosforilação de canais de sódio e, consequentemente, transmitindo o sinal doloroso para o sistema nervoso central. Portanto, esta sensibilização periférica mediada por prostaglandinas nos nociceptores aferentes primários periféricos poderia ser bloqueada por agentes AINH’s tópicos. Medicações como indometacina, aspirina e diclofenaco, de aplicação tópica, têm sido utilizadas para dor neuropática, apesar dos resultados inconsistentes 4.

ANESTÉSICOS LOCAIS

Os anestésicos locais aplicados tópicamente podem aliviar a dor de caráter neuropático através da redução das descargas ectópicas de nervos somáticos superficiais em áreas de dor localizada 4. Eles se ligam a canais de sódio anormais que estão suprarregulados nos nervos periféricos lesados, suprindo assim sua atividade anormal e espontânea que pode iniciar ou manter estados de dor neuropática. Estão disponíveis na forma de patch de lidocaína a 5% e como uma mistura eutética de anestésicos locais, Eutectic Mixture of Local Anesthetics (EMLA), na forma de creme, contendo prilocaina a 2,5% e lidocaína a 2,5% 4. Nos Estados Unidos, o patch de lidocaína 5% é licenciado para uso em pacientes com neuralgia pós-herpética. Eles contêm 750 mg de lidocaína, das quais apenas 5% é liberada. Mesmo com múltiplas aplicações do patch de lidocaína, os níveis sistêmicos deste fármaco permanecem baixos.

A administração tópica deste grupo de fármacos tem sido mostrado bastante segura e isenta de efeitos colaterais importantes. Um estudo farmacocinético avaliou os efeitos do patch de lidocaína a 5% aplicado continuamente por 72 horas em voluntários sadios. A concentração sérica mensurada foi 25 vezes menor que a necessária para produzir efeitos tóxicos. Não foi observada perda de sensibilidade no sítio de aplicação, porém a maioria dos pacientes apresentou leve eritema local 5.

O creme de EMLA tem sido utilizado para anestesia da pele para punções venosas, para punção lombar, para injeção intramuscular e para circuncisão. Alguns trabalhos têm explorado a utilização de creme de EMLA na neuralgia pós-herpética, mas poucos têm demonstrado eficácia 1. Um estudo realizado em 11 pacientes com esta condição concluiu que a aplicação diária de EMLA produziu redução significativa nos paroxismos de dor, na alodinia e na hiperalgia. Apenas um paciente desenvolveu prurido e eritema local discreto 6. Contudo, deve-se estar atento para a possibilidade de surgimento de metahemoglobinemia com o uso prolongado de prilocaina 1.

Trabalhos que envolvem a utilização do patch de lidocaína a 5% têm produzido resultados mais consistentes no tratamento da dor neuropática 7. Um estudo com 40 pacientes portadores de neuropatias periféricas locais diversas demonstrou diferença significativa nos escores de dor após uma semana do uso do patch de lidocaína a 5%, com um NNT (número necessário para tratar) de 4,4 para redução da dor em 50% 8. Katz e col. 9 realizaram um ensaio clínico randomizado com 332 pacientes portadores de neuralgia pós-herpética. Após 3 semanas da aplicação do patch de lidocaína a 5%, observaram diferença estatisticamente significante nos escores de dor neuropática entre os grupos de tratamento e placebo: 65,8% dos pacientes referiram alívio da dor na primeira semana e 77% relataram melhora na qualidade de vida. Apenas 14% apresentaram leve eritema local 9.

CAPSAICINA

A capsaicina é um composto proveniente do extrato do pimento chilli 1. Seu mecanismo de ação consiste na ligação a nociceptores, receptores específicos presentes na pele, observando-se inicialmente um estado de excitação neuronal e período de aumento da sensibilidade local. Nesta fase identificam-se sensações de queimação, picada e prurido, associados à vasodilatação cutânea. Estas manifestações são atribuídas à estimulação de fibras aferentes do tipo C e a liberação de substância P. Em seguida, ocorre um período refratário, com redução da sensibilidade, que se torna persistente após aplicações repetidas, em função da depleção de substância P e da degeneração de fibras nervosas periféricas 10.
Esta degeneração pode ser significativa em poucos dias de uso de capsaicina a 0,075%. Entretanto, com a interrupção deste fármaco, há reinação das fibras nervosa dentro de 6 semanas (após 3 semanas de tratamento). Não se conhece os possíveis efeitos do seu uso prolongado.

Os efeitos adversos da capsaicina, cuja intensidade depende da concentração da formulação, decorrem principalmente de sua aplicação local e são representados por queimação, ardência e entema. Estas reações podem comprometer a adesão ao tratamento. Estima-se que para cada 10 pacientes, um tende a abandonar a terapêutica devido à presença de sintomas locais. Ademais, por causa destes efeitos irritantes, torna-se difícil realizar ensaios clínicos duplo-cego com esta medicação. Apesar de efeitos sistêmicos serem raros, estudos têm demonstrado que alguns pacientes desenvolvem hiperreatividade do trato respiratório por inalação de partículas da capsaicina.

A capsaicina é eficaz no tratamento da dor neuropática e da dor associada a condições como osteoartrite, artrite reumatoide e psoríase. Seu efeito tem sido observado em condições como neuropatia diabética, neuralgia pós-herpética, polineuropatia periférica crônica e dor cirúrgica neuropática. Esta observação originou a hipótese de que a administração periférica destes receptores reproduz antinocicepção, tornando o desenvolvimento da mesma. Acredita-se que a ação simpaticolítica em estruturas espinhais e supraespinhais estariam potencialmente implicados nas possíveis efeitos antinociceptivos da clonidina. Sabe-se que sua ativação dos receptores α-2-adrenérgicos é de fácil aplicabilidade e atua em receptores α-2-adrenérgicos pré-sinápticos, os quais estão presentes em estruturas do sistema nervoso periférico e central, mais precisamente no cérebro, medula espinal e gânglios das raízes dorsais. Todos estes sítios estão potencialmente implicados nos efeitos antinociceptivos da clonidina. Sabe-se que sua ação simpaltolítica em estruturas espinhais e supraespinhais responsáveis pela modulação do estímulo doloroso resulta em analgesia eficaz. Classicamente, a clonidina tem sido utilizada por via sistêmica e no neuroeixo. Seu uso terapêutico, entretanto, tem sido limitado por efeitos adversos como sedação, boca seca, hipotensão e hipertensão rebote.

Sabe-se que receptores α-2-adrenérgicos são expressados em neurônios sensoriais nociceptivos primários e que a administração periférica destes receptores reproduz antinocicepção. Esta observação originou a hipótese de que a administração tópica de clonidina tem efeito antinociceptivo, motivando o desenvolvimento da mesma. Acredita-se que a clonidina, como uma substância lipofílica, penetre facilmente na pele e alcance as vias antinociceptivas locais, propiciando analgesia.

Os nervos periféricos lesados apresentam sensibilidade adrenérgica aumentada e a presença de agonistas adrenérgicos, como a noradrenalina, pode aumentar suas descargas eletroquímicas, resultando em maior sensação dolorosa. Estudos demonstram que a ativação dos receptores α-2 adrenérgicos periféricos pela clonidina reduz a liberação local de catecolaminas, diminuindo a dor e a alodinia. A clonidina tópica tem sido mostrada eficaz em pacientes com neuropatia diabética, sobretudo naqueles com dor fina e cortante, entretanto, sua aplicação tópica repetida pode resultar em tolerância antinociceptiva já no 3º dia de uso.

CLONIDINA

A clonidina é um fármaco agonista dos receptores α-2-adrenérgicos pré-sinápticos, os quais estão presentes em estruturas do sistema nervoso periférico e central, mais precisamente no cérebro, medula espinal e gânglios das raízes dorsais. Todos estes sítios estão potencialmente implicados nos efeitos antinociceptivos da clonidina. Sabe-se que sua ação simpaltolítica em estruturas espinhais e supraespinhais responsáveis pela modulação do estímulo doloroso resulta em analgesia eficaz. Classicamente, a clonidina tem sido utilizada por via sistêmica e no neuroeixo. Seu uso terapêutico, entretanto, tem sido limitado por efeitos adversos como sedação, boca seca, hipotensão e hipertensão rebote.

Sabe-se que receptores α-2-adrenérgicos são expressados em neurônios sensoriais nociceptivos primários e que a administração periférica destes receptores reproduz antinocicepção. Esta observação originou a hipótese de que a administração tópica de clonidina tem efeito antinociceptivo, motivando o desenvolvimento da mesma. Acredita-se que a clonidina, como uma substância lipofílica, penetre facilmente na pele e alcance as vias antinociceptivas locais, propiciando analgesia.

CETAMINA

A cetamina é um fármaco antagonista não competitivo de receptores N-metil-D-aspartato (NMDA). Neurotransmissores como glutamato e aspartato são liberados em resposta a estímulos noceceptivos e se ligam aos receptores NMDA, aos receptores AMPA e aos receptores do glutamato do tipo M, exercendo um papel importante no mecanismo de sensibilização central e no fenômeno de wind-up, os quais estão implicados na perpetuação da dor. Apesar dos seus potenciais benefícios no tratamento da dor, principalmente na dor neuropática, a administração sistêmica da cetamina em nível ambulatorial tem sido limitada devido à inexistência de formulações orais e à presença de efeitos adversos como alucinações, náuseas e vômitos. A cetamina tópica em forma de gel é uma alternativa, já que é de fácil aplicabilidade e atua em receptores opioides como antagonista dos receptores NMDA periféricos e no bloqueio de canais de sódio e potássio. A cetamina tópica, quando aplicada em pacientes portadores de dor neuropática crônica, é eficaz em reduzir a alodinia e a hiperalgésia. Estudos demonstram que o efeito analgésico da cetamina é dose-dependente, observando-se
alteração na sensibilidade têrmica, na sensação de relaxamento e na analgesia com as doses 0,13 mg·kg\(^{-1}\), 0,2 mg·kg\(^{-1}\) e 0,37 mg·kg\(^{-1}\), respectivamente\(^{20}\).

A cetamina tópica pode apresentar-se como uma opção terapêutica para os pacientes com dor neuropática. Em portadores de síndrome dolorosa complexa regional, o uso tópico da cetamina foi eficaz em melhorar a alodinia\(^{21}\). Entretanto, devido à escassez de estudos mais consistentes, que envolvam um grande número de pacientes, o uso tópico da cetamina deverá ser reservado para os casos refratários\(^{20}\).

OPIOIDES

Os opioides são fármacos já consagrados para o tratamento da dor de moderada a forte intensidade. O potencial para efeitos adversos e o medo da dependência têm limitado o seu uso. Eles atuam em receptores específicos que, ao serem ativados, interferem na transmissão de impulsos dolorosos. Exercem efeitos inibitórios tanto no encéfalo, quanto através do aumento do limiar nociceptivo das fibras da substância gelatinosa localizada no corno posterior da medula espinhal. Estudos demonstram que os receptores opioides estão presentes também no sistema nervoso periférico. Ao serem sintetizados nos gânglios das raízes dorsais da medula espinhal, são transportados aos terminais periféricos dos neurônios aferentes primários via axonal, que, quando estimulados, diminuem a liberação de substância P, contribuindo no controle da dor\(^{1}\).

Como base nestes conhecimentos, os opioides de formulação tópica têm sido estudados para o tratamento da dor relacionada às úlceras de pressão, uma vez que alterações na perfusão local impede que opioides sistêmicos atinjam níveis satisfatórios no sítio de ação pretendido. Ademais, os pacientes acometidos por este tipo de lesão frequentemente têm diversas outras comorbidades e, portanto, estão mais propensos aos efeitos adversos sistêmicos dos opioides, sobretudo depressão respiratória\(^{22}\). Três estudos randomizados demonstraram a eficácia da morfina e diamorfina gel para o tratamento da dor relacionada às úlceras de pressão, com a melhora nos escores de dor através de escalas verbais\(^{23,25}\). Porém, ainda não há recomendações claras no que diz respeito à posologia e opioide ideal\(^{22}\).

A morfina em forma de solução para enxágue bucal também tem se revelado eficaz para analgesia de pacientes com mucosite relacionada ao câncer, sendo que a solução a 2% foi estatisticamente mais eficaz que a solução a 1%\(^{26,27}\).

CANABINOIDES

Os canabinoides são substâncias derivadas da planta *Cannabis sativa*, com propriedades alucinógenas e depressoras. Os efeitos antinociceptivos centrais dos canabinoides são mediados pela ativação do receptor CB1 no encéfalo e medula espinhal, atuando na modulação do estímulo doloroso. Os receptores CB2 estão presentes em tecidos não neurais, como a microglia. Os efeitos colaterais sistêmicos dos canabinoides, no entanto, podem provocar hipoatividade, disfunção motora e hipotermia, o que tem sido uma das limitações para seu uso terapêutico, além das questões relacionadas a elementos socioculturais e legais\(^{28}\).

A observação da expressão de receptores canabinoides em neurônios periféricos tem contribuído para a realização de trabalhos que explorem a utilização de formulações tópica dos canabinoides. A ativação dos receptores CB1 promove a inibição local da síntese de AMP cíclico, a inibição da liberação de substância P e do peptídeo relacionado ao gene a calcitonina, além da abertura dos canais de potássio via proteína G. Seu efeito analgésico tópico vem sendo demonstrado em modelos animais como fármaco isolado\(^{29}\) ou associado a outros analgésicos. Foi demonstrado que o uso tópico dos canabinoides pode potencializar os efeitos antinociceptivos da morfina tópica\(^{30}\).

CONCLUSÃO

Os analgésicos tópicos são promissores como estratégia para o tratamento da dor, já que estão associados à menor incidência de efeitos colaterais. O benefício dos anestésicos locais, dos AINH’s e da capsaicina está bem-estabelecido; no entanto, a eficácia de clonidina, antidepressivos tricíclicos, cetamina, opioides e canabinoides ainda é questionável. Trabalhos demonstram que a abordagem multimodal é uma alternativa, porém estudos são necessários para confirmar esta hipótese.

REFERÊNCIAS/REFERENCES

Resumen: Flores MP, Castro APCR, Nascimento JS - Analgésicos Tópicos.

Justificativa y objetivos: El tratamiento del dolor involucra la utilización de analgésicos opioides, analgésicos comunes, antiinflamatorios no hormonales y analgésicos adyuvantes. Tradicionalmente, esos fármacos son administrados por vía sistémica o en el neuro eje. Sin embargo, cuando se aplican por esas vías, están asociados a los efectos colaterales importantes, los cuales pueden impedir su uso. La administración tópica de analgésicos es una alternativa. El objetivo de este trabajo es discutir los analgésicos tópicos, sus mecanismos de acción y la eficacia clínica.

Contenido: Se trata de un trabajo de revisión que aborda la utilización tópica de anestésicos locales, capsaicina, clonidina, antidepresivos tricíclicos, cetamina, opioides y canabinoides, discutiendo su mecanismo de acción y su eficacia.

Conclusiones: Los analgésicos tópicos son promisorios como una estrategia para el tratamiento del dolor, ya que están asociados con una menor incidencia de efectos colaterales. El beneficio de los anestésicos locales, de los AINH’s y de la capsaicina está muy bien establecido, sin embargo, la eficacia de la clonidina, los antidepresivos tricíclicos, cetamina, opioides y canabinoides, todavía es cuestionable. Algunos trabajos demuestran que el abordaje multimodal es una alternativa, pero más estudios son necesarios para poder confirmar esa hipótesis.

Descriptores: ANALGESIA; ANALGÉSICOS, Antiinflamatorios no esteroides, Cetamina, Opioides; Canabinoides; ANESTESIA, Tópica; Antidepresivos; Capsaicina; DOLOR.